
 

 Document Number Revision Prepared By Approved By 
 APN0016  1.1 NGB NB 

 Title  Page 
 Connecting Senquip Devices to Cumulocity IoT 1 of 8 

 
 

 

Copyright © 2020 Senquip Pty Ltd.  Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document.  The 

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means, 

without the prior written consent of the Company. 

CONNECTING SENQUIP DEVICES TO CUMULOCITY IOT 

1. Introduction 
This application note details how to integrate Senquip telemetry devices with Cumulocity IoT from Software AG 

using MQTT static templates.  Senquip devices and Cumulocity IoT also support HTTP and other MQTT protocols, but 

these will not be considered in this application note. 

Cumulocity IoT enables full IoT solutions to be created in minutes by anyone who can use everyday office 

productivity apps. This allows your business to adopt an extremely efficient, low-effort, rapid-refinement, and agile 

approach to IoT solution creation. 

This application note is also available as a video on YouTube. 

Connect: Connect any “thing” using any protocol over any network using a “plug-and-play” approach. 

Analyse: Get instant insights from a range of analytics techniques and visualize these in real-time interactive 

dashboards. 

Integrate: Embed IoT data into your business applications and orchestrate workflows between them. 

MQTT stands for Message Queuing Telemetry Transport and is a lightweight, publish-subscribe network protocol 

that transports messages between devices.  To ease device integration Cumulocity IoT already supports several static 

templates that can be used by any client to send standard messages to Cumulocity IoT.  This application note will 

make use of static templates that will be implemented using a simple script running on the Senquip device. 

 

https://youtu.be/tdOSPq9fEak


 

 Document Number Revision Prepared By Approved By 
 APN0016  1.1 NGB NB 

 Title  Page 
 Connecting Senquip Devices to Cumulocity IoT 2 of 8 

 
 

 

Copyright © 2020 Senquip Pty Ltd.  Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document.  The 

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means, 

without the prior written consent of the Company. 

 

Figure 1 - Cumulocity IoT Dashboard 

2. Device and Cumulocity IoT Configuration 
This section outlines how to configure a Senquip device to communicate with Cumulocity IoT over MQTT.  It is 

assumed that the user has created an account on the Senquip Portal to allow device configuration and has an 

account on Cumulocity IoT.  It is always a good idea to upgrade to the latest Senquip device firmware. 

Static templates allow devices to send configuration data to specify the capability of the attached device, properties 

such as hardware and firmware revisions, measurements including position, alarms, and events.  Each static 

template has a defined structure that is documented on the Cumulocity website. 

Static templates support automatic creation of devices if they do not exist. When you send data, Cumulocity IoT will 

automatically create a device for the MQTT Client ID. If you want to create the device on your own, your first 

message must be the device creation. In this case Cumulocity IoT will create the device from the template. 

To setup the MQTT endpoint details, using the Senquip Portal, go to Settings>Endpoint and fill in the MQTT section. 

https://docs.senquip.com/device_changelist/index.html
https://cumulocity.com/guides/device-sdk/mqtt/#mqtt-static-templates


 

 Document Number Revision Prepared By Approved By 
 APN0016  1.1 NGB NB 

 Title  Page 
 Connecting Senquip Devices to Cumulocity IoT 3 of 8 

 
 

 

Copyright © 2020 Senquip Pty Ltd.  Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document.  The 

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means, 

without the prior written consent of the Company. 

 

Figure 2 - Example MQTT configuration for Cumulocity IoT 

The Broker Address is of the format mqtt.cumulocity.com and will depend on your region and the type of account.  

The Port is 1883 and so the Broker Address becomes “mqtt.cumulocity.com:1883”.  If left blank, the Client ID will 

default to the Senquip device ID.  To use static templates, you need to publish the MQTT messages to the Topic 

“s/us”.  In this case, we will be publishing MQTT messages within the script and so you can leave the Data Topic 

blank.   

When you register for an account on Cumulocity IoT, you will receive a tenant ID.  Your username will be formed 

from the tenant ID and username in the format <tenantID/username>.  In this case the tenant ID is “t123456789” 

and the username is “demo@senquip.com” and so the username is “t123456789/demo@senquip.com”.  The 

Password is the password for you Cumulocity  IoT account. 

Lastly, unselect the Use Senquip Data Format option to stop standard Senquip messages being sent to the 

Cumulocity portal.  In the next section, we will create custom messages specific to the platform. 

 

Figure 3 - Unselect Use Senquip Data Format 



 

 Document Number Revision Prepared By Approved By 
 APN0016  1.1 NGB NB 

 Title  Page 
 Connecting Senquip Devices to Cumulocity IoT 4 of 8 

 
 

 

Copyright © 2020 Senquip Pty Ltd.  Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document.  The 

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means, 

without the prior written consent of the Company. 

There is no configuration required in the Cumulocity IoT platform.  Devices will be created as they first communicate. 

3. Creating the Static Templates to Create a Device 
To ease device integration, Cumulocity IoT already supports a number of static templates that can be used by any 

client without the need to create your own templates. These templates focus on the most commonly used messages 

for device management purposes.  These templates will be generated using a script that runs on the Senquip device.  

A list of static templates is shown in Figure 4.   

 

Figure 4 - Available Static Templates. 

Messages that are used for device setup are known as Inventory Templates and are all in the 100’s range.  These 

messages set up the device and specify hardware and firmware settings.  They only need to be sent once or if there 

is a change.  In the example script, the setup messages are programmed to be sent when the user presses a trigger 

button on the Senquip Portal, causing a setup function in the script to execute.  Device details such as the device 

name and firmware revision can be read from within a script using the Cfg.get() instruction.  For further details on 

setting up trigger buttons on the Senquip Portal and other scripting fratures, see the Senquip Scripting Guide. 

https://cumulocity.com/guides/device-sdk/mqtt/#quick-reference
https://cumulocity.com/guides/device-sdk/mqtt/#inventory-templates
https://docs.senquip.com/scripting_guide/
https://cumulocity.com/guides/device-sdk/mqtt/#quick-reference


 

 Document Number Revision Prepared By Approved By 
 APN0016  1.1 NGB NB 

 Title  Page 
 Connecting Senquip Devices to Cumulocity IoT 5 of 8 

 
 

 

Copyright © 2020 Senquip Pty Ltd.  Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document.  The 

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means, 

without the prior written consent of the Company. 

 

Figure 5 - Trigger button to execute device setup 

To create a new device on Cumulocity IoT, we use the 100 template.  The format of this message is “100,device 

name,device type”.  The line in the example script to send the 100 template looks like this:  

MQTT.pub("s/us","100,"+Cfg.get('device.name')+",c8y_MQTTdevice”; 

In this line of code, MQTT.pub publishes the given message to topic “s/us”.  Once this message is published, a device 

will be created on your Cumulocity IoT dashboard. 

 

Figure 6 - Device Created on Cumulocity IoT 



 

 Document Number Revision Prepared By Approved By 
 APN0016  1.1 NGB NB 

 Title  Page 
 Connecting Senquip Devices to Cumulocity IoT 6 of 8 

 
 

 

Copyright © 2020 Senquip Pty Ltd.  Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document.  The 

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means, 

without the prior written consent of the Company. 

We send further configuration messages of type 110, 115, and 117 to send the device ID, model, hardware revision, 

and firmware revision.  Multiple static templates can be published at once by putting them on new lines (\r\n).  The 

entire function, that is executed when the trigger button is pressed is shown in Figure 7.   

 

Figure 7 - Script to Configure a Device 

4. Creating the Static Templates to Send Data and Create Alarms  
In this example, we have turned on the GPS and ambient temperature sensors on the Senquip device and are going 

to send these along with other data to our Cumulocity IoT dashboard.  Again we use static templates to send data.  

The Measurement Templates are all in the 200’s range.  In the snippet of code in Figure 8, we are sending location 

using template 112, temperature using 211, and battery voltage using 212. 

 

 

Figure 8 - Sending Data with a Script 

We have also created an alarm if the ambient temperature increases above 25 degrees.  Alarms are created using 

Alarm Templates in the 300’s range. 

The script to send the measurements and process alerts is in a function that runs after each device measurement 

cycle and so data will be sent at the Senquip device base interval. 

 

 

https://cumulocity.com/guides/device-sdk/mqtt/#measurement-templates
https://cumulocity.com/guides/device-sdk/mqtt/#alarm-templates


 

 Document Number Revision Prepared By Approved By 
 APN0016  1.1 NGB NB 

 Title  Page 
 Connecting Senquip Devices to Cumulocity IoT 7 of 8 

 
 

 

Copyright © 2020 Senquip Pty Ltd.  Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document.  The 

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means, 

without the prior written consent of the Company. 

In the Device Manager on Cumulocity IoT we can see the location, battery voltage, an alarm and other information is 

being shown on a dashboard. 

 

Figure 9 - Data Arriving on Cumulocity IoT 

The dashboard shown in Figure 9 has been achieved with no setup of Cumulocity IoT at all. The next step is to use 

the Cockpit function to manage your device, create dashboards, and explore your data. 

5. Conclusion 
Sending data to Cumulocity IoT is as simple as configuring the Endpoint settings on the Senquip Device and writing a 

simple script.  Almost no configuration is required on Cumulocity IoT as devices are created automatically. 

  



 

 Document Number Revision Prepared By Approved By 
 APN0016  1.1 NGB NB 

 Title  Page 
 Connecting Senquip Devices to Cumulocity IoT 8 of 8 

 
 

 

Copyright © 2020 Senquip Pty Ltd.  Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document.  The 

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means, 

without the prior written consent of the Company. 

Appendix 1: Source Code 
 

load('senquip.js'); 

load('api_config.js'); 

load('api_endpoint.js'); 

load('api_timer.js'); 

 

// This function gets called every time a measurement cycle finishes 

SQ.set_data_handler(function(data) { 

  let obj = JSON.parse(data); 

   

  // Send some data 

  if ((typeof obj.gps_lat === 'number') && (typeof obj.gps_lon === 'number')) { 

   MQTT.pub("s/us","100,"+Cfg.get('device.name')+",c8y_MQTTdevice\r\n"+ 

                   "112,"+JSON.stringify(obj.gps_lat)+","+JSON.stringify(obj.gps_lon)+"\r\n"+ 

                   "211,"+JSON.stringify(obj.ambient)+"\r\n"+ 

               "212,"+JSON.stringify(obj.vin));  

  } 

   

  // If running off cellular, send details 

  if (typeof obj.gsm_imei === 'string') { 

    MQTT.pub("s/us", "111,"+JSON.stringify(obj.gsm_imei)+","+JSON.stringify(obj.gsm_iccid));      

  } 

   

  // Set an arbitary alert 

  if (obj.ambient > 25) { 

    let now = Timer.now(); 

    MQTT.pub("s/us", "301,c8y_TemperatureAlarm,Yikes it is hot,"+Timer.fmt("%FT%TZ", now)); 

  } 

   

}, null); 

 

 

// This function gets called when the user presses the trigger 1 button 

SQ.set_trigger_handler(function(trig) { 

  if (trig === 1) {  

    // Send setup messages (only required once) 

    MQTT.pub("s/us","100,"+Cfg.get('device.name')+",c8y_MQTTdevice\r\n"+            

"110,"+Cfg.get('device.id')+","+Cfg.get('device.model')+","+Cfg.get('device.hw')+"\r\n"+ 

                    "115,"+Cfg.get('device.fw')+"\r\n"+ 

                "117,60");                 

  } 

}, null); 


